
Urgent Virtual Machine Eviction with Enlightened Post-Copy

Yoshihisa Abe†, Roxana Geambasu‡, Kaustubh Joshi•, Mahadev Satyanarayanan†

†Carnegie Mellon University, ‡Columbia University, •AT&T Research
{yoshiabe, satya}@cs.cmu.edu, roxana@cs.columbia.edu, kaustubh@research.att.com

Abstract
Virtual machine (VM) migration demands distinct properties
under resource oversubscription and workload surges. We
present enlightened post-copy, a new mechanism for VMs
under contention that evicts the target VM with fast execu-
tion transfer and short total duration. This design contrasts
with common live migration, which uses the down time of
the migrated VM as its primary metric; it instead focuses
on recovering the aggregate performance of the VMs being
affected. In enlightened post-copy, the guest OS identifies
memory state that is expected to encompass the VM’s work-
ing set. The hypervisor accordingly transfers its state, miti-
gating the performance impact on the migrated VM resulting
from post-copy transfer. We show that our implementation,
with modest instrumentation in guest Linux, resolves VM
contention up to several times faster than live migration.

1. Introduction
As a means of load balancing, VM migration plays a cru-
cial role in cloud resource efficiency. In particular, it affects
the feasibility of oversubscription. Oversubscription is co-
location of VMs on the same host in which their allocated
resources can collectively exceed the host’s capacity. While
it allows the VMs to share the physical resources efficiently,
at peak times they can interfere with each other and suffer
performance degradation. Migration, in this situation, offers
a way of dynamically re-allocating a new machine to these
VMs. The faster the operation is in resolving the contention,
the more aggressive vendors can be in deploying VMs. With-
out a good solution, on the other hand, those with perfor-
mance emphasis must relinquish resource efficiency and use
more static resource assignments, such as Placements on
Amazon EC2 [1]. Although such strategies can guarantee
VM performance, they lead to wasted resources due to con-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

VEE ’16 April 2–3, 2016, Atlanta, Georgia, USA.
Copyright c© 2016 ACM 978-1-4503-3947-6/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2892242.2892252

servative allocation. Migration for contending VMs thus has
its own value, which can impact resource allocation policies.

However, migration of a VM under contention poses
challenges to be solved because of its distinct requirements.
It needs to salvage the performance of all the VMs being
affected, namely their aggregate performance. The primary
goal, therefore, is to evict the target VM from its host rapidly,
allowing the other VMs to claim the resources it is currently
consuming. This objective is achieved by transferring the
execution of the migrated VM to a new host, so that its
computational cycles are made available to the other VMs.
Additionally, the duration of migration decides when the
VM’s state can be freed on the source host; reclaiming the
space of memory state, which can be tens or hundreds of
gigabytes, can be particularly important. While adhering to
these priorities, the impact on the migrated VM should be
mitigated to the extent possible, for its service disruption to
be limited and the aggregate performance to recover fast.

These properties are especially desirable when the VMs
provide services that need to sustain high overall throughput.
Example cases include back-end servers or batch-processing
applications, such as big data analytics. With these types of
workloads, resolving the contention between VMs directly
translates to optimizing their performance as a whole. Mi-
gration can also be more for saving the contending VMs than
the target VM itself. The contending VMs can be running
more latency-sensitive services, such as web servers, than
those of the target VM. Or, the target VM may be malfunc-
tioning, for example under a DoS attack, needing diagnosis
in segregation. In all these situations, as illustrated in Figure
1, migration with appropriate characteristics would allow the
VMs to be co-located under normal operation, and to be al-
located new resources when experiencing a surge of loads.

Unfortunately, the requirements described above defy the
trends in VM migration approaches. In particular, the cur-
rent standard of live migration [12, 30] often results in elon-
gated duration due to its design principles [19, 38]. This be-
havior leaves VMs under contention, delaying their perfor-
mance recovery. In this paper, we present a design point that
is fundamentally different and driven by enlightenment [28].
Enlightenment is a type of knowledge the guest passes to
the hypervisor for improving the efficiency of its operation.
Applying it to migration, we develop an approach called en-

Host 1
Batch
Proc.

VM

Both Degraded Throughput

Before

After

Batch
Proc.

VM

Host 2

Ideal Throughput Ideal Throughput

Host 1
Batch
Proc.

VM

Batch
Proc.

VM

(a) Optimizing Aggregate Throughput

Host 1
Web

Server

VM
Before

After

Batch
Proc.

VM

Host 2

Ideal Response Time Ideal Throughput

Host 1
Web

Server

VM

Batch
Proc.

VM

Web Server: Degraded Response Time
Batch Proc.: Degraded Throughput

(b) Saving Response-Time-Sensitive Service

Host 1
Normal
Opera-

tion
VM

Before

After

Malfun-
ctioning

VM

Host 2

Ideal Performance Isolated

Host 1
Normal
Opera-

tion
VM

Malfun-
ctioning

VM

Malfunctioning VM Affecting
VM under Normal Operation

(c) Isolating VM for Diagnosis

Figure 1. Scenarios for Urgent VM Eviction. The top and bottom rows illustrate VMs before and after migration, respectively.

lightened post-copy. It employs a post-copy style, in which
the VM is resumed on the destination before its state has
been migrated, and mitigates the resulting performance im-
pact through enlightenment. Upon migration, the guest OS
informs the hypervisor of memory regions that require high
transfer priority for sustaining the guest performance. The
hypervisor then transfers the execution of the VM imme-
diately to a new host, while continuously pushing its state
as instructed and also serving demand-fetch requests by the
destination VM. Our implementation, with modest changes
to guest Linux, shows the effectiveness of the guest’s initia-
tive in performing migration with the desired properties.

The main contributions of this paper are as follows:

• Explaining common behaviors of migration and deriving
properties desired for VMs under contention (Section 2).
• Presenting the design and implementation of enlightened

post-copy, an approach that exploits native guest OS sup-
port (Sections 3 and 4).
• Evaluating the performance and trade-offs of enlight-

ened post-copy against live migration and other basic ap-
proaches (Section 5).

2. Analysis of VM Migration
VM migration has historically focused on the liveness,
namely minimal suspension, of the target VM. Specifically,
live migration is the current standard widely adopted by
common hypervisors [12, 30]. The characteristics of live mi-
gration, however, deviate from those desired in the context of
VMs under contention; it leads to extended duration of mi-
gration and thus continued interference of the VMs. Figure
2 illustrates this problem, with live migration by qemu-kvm
2.3.0 under the Memcached workload and experimental set-
up described in Section 5. One of the two contending VMs
is migrated, with approximately 24 GB of memory state to
be transferred, under varied bandwidth. Migration takes 39.9
seconds at 10 Gbps, and fails to complete at 2.5 Gbps. For
the duration of migration, the VMs suffer degraded perfor-
mance due to their mutual interference. In this section, we

(x1000)

(x1000)

(x1000)

Figure 2. Live Migration Behavior of qemu-kvm under VM
Contention. The y-axis indicates throughput in operations
per second. The black and gray lines represent the migrated
and contending VMs, respectively, and the shaded areas the
duration of migration.

describe the algorithm and behavior of live migration caus-
ing this problem, and derive the properties desired in our
solution.

2.1 Mechanics of Migration
Figure 3 illustrates aspects of VM migration including exe-
cution, state transfer, and performance. Migration is initiated
on the source, on which the VM originally executes. The VM
is suspended at one point, and then resumed on the destina-
tion. State transfer during the course of migration is catego-
rized into two types: pre-copy and post-copy. Pre-copy and
post-copy are phases performed before and after the VM re-
sumes on the destination, respectively. Associated with the
duration of these state transfer modes, there are three key
time metrics:

• Down time: time between the suspension and resume of
the VM, during which its execution is stopped.

Down Time

Post-Copy

Total Duration

Migration
Start

Migration
End

VM
Suspension

VM
Resume

Execution Transfer Time

Pre-Copy

Source DestinationVM Execution
Location

State
Transfer

Time
Metrics

Possible Impact
on Performance

Dirty State
Tracking

Missing
VM State

Figure 3. Overview of Migration Mechanics

• Execution transfer time: time since the start of migra-
tion until the VM resumes on the destination.
• Total duration: time since the start and until the end of

migration.

Until execution transfer completes, contending VMs on the
source continue to experience degraded performance. Thus,
the faster execution transfer is, the more effective the migra-
tion operation is in salvaging the performance of both the
migrated and other VMs. Reasonable down time also is im-
portant for mitigating the service disruption of the migrated
VM. The VM execution halts during this time, rather than
continuing with performance degradation. Finally, the hy-
pervisor on the source needs to maintain the migrated VM’s
state until the end of total duration. Shorter total duration,
therefore, means that allocated resources such as guest mem-
ory can be freed and made available to other VMs sooner.

Pre-copy and post-copy phases have associated perfor-
mance costs. Pre-copy, when overlapped with VM execu-
tion, requires tracking state changes to synchronize the des-
tination hypervisor with the latest VM state, a computational
overhead known as migration noise [20]. Post-copy, on the
other hand, can stall VM execution when the running guest
accesses memory contents that have not arrived on the des-
tination.

2.2 Live Migration
Live migration commonly employs pre-copy, and its algo-
rithm works as shown in Figure 4. Upon initiation, live mi-
gration starts sending memory page contents while continu-
ing the VM execution and keeping track of memory content
changes. It then iteratively retransmits the pages whose con-
tent has been dirtied since its last transfer. The purpose of
the iteration phase is to minimize down time, thereby opti-
mizing for the liveness of the migrated VM. While iterating,
the algorithm uses the current rate of state transfer to esti-
mate down time, during which the last round of retransmis-
sion is performed. If the expected down time is short enough
(e.g., 300 ms in qemu-kvm), the iteration phase completes
and the VM is resumed on the destination. Implementations

Start tracking page content mutation

Send all pages to destination

Re-send pages dirtied since last transfer

Check conditions for completion

Suspend guest on source

Re-send pages dirtied since last transfer

Stop tracking page content mutation

Resume guest on destination

Expected down time is below threshold
or additional condition holds

Otherwise

Figure 4. Live Migration Algorithm

can also have additional conditions for preventing migration
from taking an excessive amount of time. Common exam-
ples include a limit on the number of iterations, and high
expected down time that steadily exceeds a threshold. Re-
gardless of the exact form in which these conditions are ex-
pressed, common to these parameters of live migration is
that they aim to control the maximum duration of the iter-
ation phase. Note that Figure 4 illustrates the migration of
memory state; in this paper, we assume the availability of
disk state through shared storage.

2.2.1 Impact of Workloads
Being pre-copy and optimized for down time, live migra-
tion handles state transfer while dealing with the guest state
changes. Consequently, its behavior depends on the guest
workload and the bandwidth available for migration traf-
fic. Figure 5 shows the throughput of a Memcached server,
hosted in a VM, during live migration by qemu-kvm. The
memslap benchmark generates a load for the server, and its
set-get ratio and the bandwidth available for migration traffic
are varied. The other configurations for these measurements
are the same as those described in Section 5, with the guest
allocated 30 GB of memory and the server using 24 GB as its
cache. Note that qemu-kvm zeroes out guest memory when
setting it up, and live migration compresses each page whose
bits are all zeros to one byte accompanied by a header; thus,
it avoids sending the unused 6 GB in these measurements.

As the available bandwidth for migration traffic de-
creases, live migration takes more time to complete. This
increase is non-linear; with set-get ratio of 1:9, migration fin-
ishes in approximately 40 and 90 seconds at 10 and 5 Gbps,
respectively. At 2.5 Gbps, it fails to complete in a timely
manner. With set-get ratio of 5:5, migration does not com-
plete even at 5 Gbps. This is because expected down time
never becomes short enough with the guest workload, and

(a) Set-Get Ratio: 1:9

(b) Set-Get Ratio: 5:5

(x1000)

(x1000)

(x1000)

(x1000)

(x1000)

(x1000)

Figure 5. Behavior of Migrating a Memcached VM with
qemu-kvm. The y-axis indicates throughput in operations
per second, and the shaded areas the duration of migration.

qemu-kvm does not use a hard limit on the number of itera-
tions. In addition, we can observe more throughput degrada-
tion during migration with set-get ratio of 5:5 than with 1:9.
As the workload generates more memory content changes,
dirty state tracking interferes more with it because of trap-
ping memory writes, which are caught more frequently. Fi-
nally, even when live migration performs fairly well with
set-get ratio of 1:9 and at 10 Gbps, it takes considerably
longer than transferring 24 GB over that bandwidth (which
takes less than 20 seconds). qemu-kvm’s migration code is
single-threaded, and it saturates a CPU core to transmit state
at gigabytes speed while tracking dirty pages. Migration can
thus easily be a CPU-bound procedure unless special care is
taken, for example by parallelization of the code [39].

2.2.2 Commonality among Implementations
The characteristics of live migration explained above are
inherent to its algorithm, and therefore shared by major
implementations. Figure 6 shows the behavior of migrat-
ing a Memcached VM with common hypervisors, qemu-

Figure 6. Behavior of Migrating a Memcached VM with
Major Hypervisors at 10 Gbps. The y-axis indicates through-
put normalized against the maximum in each measurement,
and the shaded areas represent the duration of migration.

kvm 2.3.0, Xen 4.1.6, and VirtualBox 4.3.161. The memslap
benchmark is run with set-get ratio of 1:9. The VM memory
size and server cache size are the same as explained previ-
ously: 30 GB and 24 GB. The VM is assigned 4 cores, and
migrated over a 10 Gbps link. Note that we used machines
different from those for the rest of our measurements, due to
hardware accessibility reasons. They were equipped with an
Intel Core i7-3770 CPU at 3.4 GHz and 32 GB of memory,
running Ubuntu 12.04 with Linux kernel version 3.5.0.

As each implementation differs from one another, the per-
formance cannot be directly compared between the hypervi-
sors. In particular, the duration of the iteration phase is de-
termined by parameters, and additional factors such as page
content compression also lead to varying performance. For
example, Xen takes longer than qemu-kvm, with its nature
of throughput degradation during migration differing from
that of qemu-kvm. Also, unlike the other hypervisors, Virtu-
alBox does not complete migration under this workload. The
key point of these results, however, is not the absolute per-
formance differences, but the common behavior that the VM
lingers on the source for tens of seconds or longer. This total
duration exemplifies the cost paid in an effort to minimize
down time.

2.3 Desired Properties of Migration under Contention
Live migration thus exhibits undesirable behavior when mi-
grating contending VMs, for two fundamental reasons. First,
it focuses on the down time of the target VM, rather than
considering all the VMs affected. Second, it uses pre-copy
and monitors the VM workload to achieve its objective,
delaying execution transfer. Our goals, in contrast, are to
1) free resources on the source rapidly through fast execu-
tion transfer and short total duration, 2) handle loaded VMs

1 Similar results with VMware ESXi 5 are publicly available in [7].

without relying on the reduction in their workloads, and 3)
with these properties, salvage the aggregate performance of
the VMs under contention. These requirements motivate the
guest’s active cooperation, which allows the departure from
pre-copy and workload monitoring.

3. Enlightened Post-Copy Migration
Our approach to the above goals, called enlightened post-
copy, exploits guest cooperation and post-copy-style state
transfer. We derive the key ideas behind this approach specif-
ically from our goals. First, minimizing execution transfer
time requires that VM execution be immediately suspended
on the source and resumed on the destination. This early sus-
pension upon the start of migration also ensures minimal to-
tal duration, because the frozen VM state necessitates no re-
transmission as done in live migration. Therefore, post-copy
follows naturally as the desirable method of state transfer.
Second, fast performance recovery of the migrated VM re-
quires that the part of its state needed for its current work-
load arrive at the destination as early as possible. The guest’s
enlightenment is the key that enables identifying this part of
the VM state; with state transfer following the instructed pri-
oritization, the VM on the destination can start recovering its
performance without the completion of entire state transfer,
and thus before the total duration of migration.

Figure 7 illustrates the workflow of enlightened post-
copy. When migration is initiated, the hypervisor makes a
request for enlightenment to the guest OS. The guest OS tra-
verses its data structures and prepares priority information
of the memory pages. Once the priority information is avail-
able, the guest OS notifies the hypervisor. The hypervisor
then suspends the VM on the source, and resumes it on the
destination immediately after sending the device state nec-
essary for the resume operation. As the VM starts execution,
the hypervisor parses the priority information and accord-
ingly transfers the remaining memory page contents to the
destination; it attempts to proactively push as many pages as
possible before the access to them.

3.1 Guest’s Enlightenment
In enlightened post-copy, the guest identifies those memory
pages containing the working set of the currently active pro-
cesses. As a design principle, the guest OS should be able
to obtain a list of these pages without incurring noticeable
overhead. Otherwise, the approach does not justify the guest
instrumentation due to the resulting performance loss. As
the types of memory page classification, therefore, we use
straightforward notions such as the code and data of the OS
kernel and running processes. Such bookkeeping informa-
tion of memory pages is already available in the OS for its
regular tasks, and re-usable without significant implementa-
tion effort for the purpose of migration.

For prioritized state transfer, the general idea is to transfer
memory pages essential for running the guest OS, those for

Request enlightenment from guest

Suspend guest on source

Resume guest on destination

Wait for response

Push and demand-fetch memory state
in parallel with VM execution

Send device and memory state
necessary for resuming VM

Figure 7. Enlightened Post-Copy Migration Algorithm

the actively running processes, and then the other less critical
pages such as the kernel page cache and those for the non-
active processes. Also, we can eliminate the transfer of the
memory pages that are not allocated by the guest OS for any
use, because the actual contents of such pages do not affect
the correctness of guest execution [23].

The guest OS needs to prepare these types of information,
as enlightenment to the hypervisor, in two distinct forms.
The memory page priorities can be determined by a one-
time operation upon the request by the hypervisor. There is
no need for always tracking them during the course of the
guest’s normal operation. On the other hand, keeping track
of allocated and non-allocated memory pages requires real-
time processing, performed with or without migration, that
maintains the information in a manner easily passed to the
hypervisor. The reason is that the source hypervisor needs to
know the exact allocation by the guest OS right at the time of
VM suspension, for the destination hypervisor to construct
a consistent memory image. For the one-time operation, the
associated costs are that of guest-host communication delay
upon migration start, and the impact of the in-guest process-
ing on performance. For the real-time processing, the cost
is the overhead added to relevant memory management op-
erations of the guest OS. Minimizing these costs motivates
the use of the above types of enlightenment, which are ade-
quately informative but not excessively fine-grained.

3.2 Integration into State Transfer
The source hypervisor can integrate enlightenment into state
transfer in a straightforward manner, because of the use of
post-copy. Since the VM is frozen at the start of migration,
enlightenment at that time reflects its latest state before exe-
cution transfer, from which the VM resumes on the destina-
tion. After receiving enlightenment and suspending the VM,
the source hypervisor pushes the memory pages as instructed
by the guest OS. While the destination hypervisor receives
the memory pages, it also issues demand-fetch requests to
the source for those that are accessed by the guest before
their arrival. Although their arrival may incur delays due to
the interference with the push traffic, these demand fetches

help reduce VM execution stalls due to the divergence of the
push order from the actual access order by the guest.

3.3 Design Trade-Offs
The design of enlightened post-copy is in sharp contrast to
that of common live migration based on pre-copy. Enlight-
ened post-copy targets VMs under load, while live migration
expects idleness from them. Enlightened post-copy, there-
fore, employs a state transfer method that enables timely
load balancing through fast physical resource reallocation.
Down time and execution transfer time are expected to be in-
stantaneous, and total duration corresponds to the one-time
transfer of the entire state. At the same time, the disruption of
the migrated VM’s performance spans a longer period than
down time itself, since post-copy is used. Guest cooperation
is the key to alleviating this disruption.

On the other hand, live migration focuses on one aspect of
the migrated VM’s performance, down time. Being a guest-
agnostic approach without an external source of knowledge,
it relies on letting the VM stay on the source and tracking
dirtied memory pages. Execution transfer time is equivalent
to total duration; these time frames become longer when
more iterations are done. The sole use of pre-copy ensures
the migrated VM’s performance on the destination, since all
the state resides there on VM resume. Thus, down time ap-
proximately represents the duration of application-level dis-
ruption. However, dirty page tracking incurs a certain cost
while the VM lingers on the source. Results in Section 5
demonstrate the effects of these trade-offs made by enlight-
ened post-copy and live migration.

4. Implementation
We implemented enlightened post-copy on guest Linux 3.2.0
and hypervisor qemu-kvm 2.3.0. Figure 8 shows its archi-
tecture. When the source hypervisor initiates migration, it
sends a request to guest Linux through a custom VirtIO de-
vice [6] (Step 1). The guest OS driver for this virtual de-
vice triggers enlightenment preparation, which scans data
structures (Step 2) and writes priority information in the
priority bitmap (Step 3). Page allocation information is al-
ways kept up-to-date in the free bitmap, so that its content is
valid whenever the the hypervisor suspends the VM. These
bitmaps maintained in the guest’s memory facilitate the pro-
cessing by the hypervisor; they are an abstract enough rep-
resentation of the passed information, and the guest OS can
avoid communicating it through the VirtIO device and in-
stead have the hypervisor directly parse it. When the priority
bitmap has been written, the guest OS notifies the hypervi-
sor through the VirtIO device (Step 4). The hypervisor then
sends to the destination the device state, including some in
the guest memory, which is used by the destination hyper-
visor for the initial VM set-up. Finally, it starts transferring
the remaining page contents in the prioritized order (Steps 5
and 6). On the destination, the hypervisor resumes the VM

!"#$"% !"#$"%&"'"()*+,%"&(-."
!"#$"%&'%%()*+", /%%-(+*".&0-#&1"#$"%&)2"
-".(#/&012 32".&0-#&4"4-#564+77".&89:
3*4"&5*6%" ;+<"&*+,%"&-0&+(*=>"&7#-("22
78"#&9(," ?'"()*+,%"&7+<"&-0&+(*=>"&7#-("22
78"#&:*+* @-$6"'"()*+,%"&7+<"&-0&+(*=>"&7#-("22
;<%"&')+<=" /(*=>"&(+(A"&-0&0=%"
;<%"&0$*)+<=" 8$+(*=>"&(+(A"&-0&0=%"

2+>"# @-*&,"%-$<=$<&*-&+$5&-0&*A"&+,->"

Table 1. Page Types Categorized by the Guest OS

once the device state has arrived. While receiving the pushed
page contents, it writes them into the guest memory. When
the guest OS accesses pages whose content has not yet been
received, it generates demand-fetch requests to the source
hypervisor. On the source, the hypervisor frees all the VM
resources once all the page contents have been sent.

4.1 Guest OS
In our guest Linux, memory management and process
scheduling code is instrumented to label each memory page
with a priority level. The instrumentation follows naturally
in the relevant existing parts of the source code, and requires
only a modest number of changes to the original kernel.

4.1.1 Enlightenment Preparation
Taking advantage of memory management information that
already exists, the guest OS classifies the memory pages
in use into the priority categories shown in Table 1. The
system-wide categories, such as Kernel, Kernel Allocated,
Memory I/O, File Active, and File Inactive, are derived
from kernel data structures or through the flags of page frame
descriptors (e.g., struct zone and struct page). For
the process-specific categories, the enlightenment prepara-
tion code parses the virtual memory area descriptors of each
active process (struct vm area struct). These cate-
gories are each assigned a numerical value, in a descending
order of priority from the top to the bottom in the above list.
This order is decided such that the core system services, the
active processes, and caching by the OS are given priority in
that order. If a particular page belongs to multiple categories,
it is treated with the highest of these priorities. Pages such
as those belonging to the inactive processes and those used
for the priority bitmap itself belong to the Other category.
The bitmap simply contains the priority values, without the
hypervisor needing to understand their exact semantics.

In order to decide the group of active processes, the
scheduler maintains the last time each process was sched-
uled for execution (in struct task struct). A pro-
cess is considered active if it has been run recently at the
time of generating enlightenment. In our implementation,
we empirically use a threshold of the past 16 seconds for
this purpose, considering the order of seconds migration is
roughly expected to take.

Hypervisor (qemu-kvm)

Other
Processes

Active
Processes

Free
Bitmap

Priority
Bitmap

VirtIO
Device

Sync'ed

2.Scan Metadata

5.Scan

1.Request

4.Response

Guest
Memory

Guest OS (Linux)

Access

Other
Processes

Active
Processes

Hypervisor (qemu-kvm)

Guest OS (Linux)

6.Push / Demand-Fetch

Demand-Fetch
Requests

3.Write
Guest

MemoryPushedPushed

Trap Trap Trap

Source Destination

Miss-
ingMissingMiss-

ing

Figure 8. Implementation of Enlightened Post-Copy. The numbers represent the steps in order during the course of migration.

When the guest OS receives a request from the hypervi-
sor, the guest OS runs code that generates the priority bitmap
as explained above. Once it notifies the hypervisor, it is en-
sured that the guest can be suspended with the bitmaps avail-
able for parsing in its memory. Note that the free bitmap
is always kept up-to-date and ready for processing. The re-
sponse from the guest OS includes the addresses of the two
bitmaps, and the hypervisor scans these locations while per-
forming state transfer.

4.1.2 Implementation Cost
The modifications to the core Linux kernel code are min-
imal, mostly under mm/ and kernel/ in the source tree.
Maintaining the free bitmap requires adding at most several
lines of code in 16 locations. Keeping track of the last sched-
ule time for each process requires a few variable assign-
ments added in the scheduler code. Marking each page with
kernel or user allocation needs less than 15 lines of code.
These operations only add atomic variable assignments in
the code paths of memory allocation and process scheduling.
As shown in our experiments, compared to the original ker-
nel, these minor modifications incur negligible performance
overhead. The VirtIO device driver and the priority bitmap
preparation code, which make use of the instrumentation, are
implemented as loadable kernel modules.

4.2 Hypervisor
On the source, the hypervisor scans the bitmaps provided by
the guest. It first scans the free bitmap and sends the cor-
responding page frame numbers in a packed format, along
with the device and some memory state, right after which
the VM is resumed on the destination. Next, the hypervi-
sor traverses the priority bitmap and starts pushing the page
contents over a TCP connection. The transfer is performed in
rounds, starting with the Kernel pages and ending with the
Other pages. While this push continues, a separate thread

services demand-fetch requests from the destination hyper-
visor over another TCP connection. Note that while we at-
tempt to give a higher priority to the demand-fetched pages
through the TCP NODELAY socket option, the push trans-
fer can still interfere with their arrival timings.

On the destination, the hypervisor registers userfault [5]
handlers with the guest memory region. Userfault is a mech-
anism on Linux that enables a user process to provide a page
fault handler of its own for specified pages. This interposi-
tion enables post-copy state transfer. The userfault handler is
first registered for the entire main memory of the VM when
the hypervisor starts on the destination. On the receipt of the
unallocated page information, the handler is removed from
the respective addresses. Then, as the memory page contents
arrive, they are written to the corresponding addresses and
the userfault handler is unregistered from these addresses.
When the guest accesses these memory pages whose content
is already available, no further interposition by the hypervi-
sor is carried out. On access to a page whose content is still
missing, the hypervisor issues a demand-fetch request to the
source hypervisor.

5. Experiments
We performed experiments to demonstrate the effective-
ness of enlightened post-copy in resolving resource con-
tention and the performance trade-offs resulting from its
design principles. Our experiments address the following
points. First, we show how enlightened post-copy salvages
the throughput of contending VMs through end-to-end re-
sults, while comparing them to those of original live migra-
tion of qemu-kvm 2.3.0. Next, we investigate the efficacy of
our approach in robustly dealing with workloads by examin-
ing the performance of two baseline methods, stop-and-copy
and simple post-copy, as reference points. Finally, we show
the cost of enlightened post-copy in terms of state transfer
amounts and guest OS overhead.

Source Destination

NFS for
Disk Images

Switch

Server

VM

Backend
Network

User
Network
1 Gbps

Second Traffic
(After Migration)

First
Traffic

10 Gbps

Client Client

Switch

Server

VM

Server

VMSecond Traffic
(Before Migration)

Migration

Figure 9. Experimental Set-Up

5.1 Set-Up and Workloads
Figure 9 shows our experimental set-up. VMs are migrated
between a pair of source and destination hosts, which are
connected through a backend 10 Gbps network for migration
traffic. They are also connected on this network to an NFS
server that stores VM disk images. The client machines use
a separate 1 Gbps network for user traffic to and from the
VMs. In the experiments except those with idle VMs, ini-
tially two VMs are running and contending with each other
on the source machine. We migrate one of the VMs to the
destination machine, after which each VM has its own dedi-
cated machine. The VM hosts and client machines are each
equipped with two Intel Xeon E5-2430 CPUs at 2.20 GHz
and 96 GB memory, running Ubuntu 14.04. The VM hosts
execute Linux kernel 4.1.0-rc3 with a userfault patch ap-
plied, while the other machines run version 3.16.0. As user-
fault currently does not support the use of huge pages, they
are disabled in our measurements. Time on the machines is
synchronized via an NTP server, and the backend bandwidth
between the VM hosts is controlled using Linux Traffic Con-
trol for measurements at 5 Gbps and 2.5 Gbps. The VMs run
Ubuntu Server 12.04 with unmodified kernel 3.2.0 in all the
cases except those with enlightened post-copy, in which we
use our modified version of the kernel.

We use the following workloads that exhibit different
types of resource intensity and reveal performance trade-offs
made by enlightened post-copy:
Memcached: The VMs run an in-memory key-value store,
Memcached 1.4.13 [2], and the clients execute its bundled
benchmark memslap 1.0, which is modified to report per-
centile latencies. The VMs are each allocated 30 GB of
memory and 8 cores, with Memcached configured with 4
threads (due to its known scalability limitation) and 24 GB
cache. We first run the benchmark against Memcached to
fill up its cache, and then perform measurements with con-
currency level of 96 and set-get ratio of 1:9. At the time of

migration, approximately 24 GB of memory is in use, almost
all of which is by Memcached.
MySQL: The VMs run MySQL 5.6, and the clients execute
OLTPBenchmark [3] using the Twitter workload with scale
factor of 960. The VMs are each allocated 16 cores and 30
GB of memory, and MySQL is configured with a 16 GB
buffer pool in memory. The concurrency of OLTPBench-
mark is set to 64. After generating the database contents, we
execute Tweet insertions for 25 minutes and then the default
operation mix for 5 minutes as a warm-up. At the time of mi-
gration, MySQL uses approximately 17 GB of memory, and
almost all of the 30 GB memory is allocated by the guest OS
for use.
Cassandra: The VMs run a NoSQL database, Apache Cas-
sandra 2.1.3 [4], and the clients use YCSB [8] 0.1.4 with
24 threads and core benchmark F, which consists of 50%
read and 50% read-modify-write operations. The VMs are
each configured with 16 cores and 30 GB of memory. Be-
fore measurements, the benchmark is run for approximately
10 minutes to warm the servers up. At the time of migration,
the server uses around 8.4 GB of memory out of 12 GB in
use by the guest OS.

In the above workload configurations, Memcached is the
most memory- and network-intensive, while consuming rel-
atively low CPU resources. Also, the VM’s memory is al-
most exclusively used by the server process itself. MySQL
is more CPU-intensive, and also less memory-intensive in
terms of the access footprint per unit time. Finally, Cassan-
dra is the most compute-intensive among these workloads,
making CPUs the source of contention. In the MySQL and
Cassandra cases, the guest OS uses a non-trivial amount
of memory in addition to that allocated by the server pro-
cesses themselves. These characteristics make Memcached
the hardest case, and MySQL and Cassandra more winning
cases for enlightened post-copy in comparison to live migra-
tion.

5.2 End-to-End Performance
In this section, we compare application-level performance
of the three workloads during migration with enlightened-
copy and live migration. In addition to the throughput of the
server applications, we also report the impact of migration
on application-level latency.

5.2.1 Memcached
Figure 10 (1) compares Memcached throughput of enlight-
ened post-copy (labeled “EPC”) and live migration (labeled
“Live”) under varied bandwidth. The y-axis shows opera-
tions per second in thousands (x1000), and the total duration
of migration is shown as shaded areas. The dark lines indi-
cate the performance of the migrated VM, and gray lines are
that of the contending VM. The dotted lines represent the
aggregate of the the two. The source of contention is user
traffic handling by the source hypervisor. As Memcached ac-
counts for almost all the guest memory pages in use (which

(1a) 10 Gbps

(1b) 5 Gbps

(1c) 2.5 Gbps

(x1000)

(x1000)

(1) Memcached

(x1000)

(x1000)

(x1000)

(x1000)

(2a) 10 Gbps

(2b) 5 Gbps

(2c) 2.5 Gbps

(2) MySQL

(x1000)

(x1000)

(x1000)

(x1000)

(x1000)

(x1000)

(3a) 10 Gbps

(3b) 5 Gbps

(3c) 2.5 Gbps

(3) Cassandra

Figure 10. End-to-End Results with Enlightened Post-Copy and Live Migration. The y-axis indicates throughput in operations
or transactions per second. The black and gray lines represent the migrated and contending VMs, respectively, and the dotted
lines the aggregate of the two. The shaded areas show the duration of migration.

are categorized into User Data) and accesses them at a great
speed, it leaves little room for memory prioritization through
enlightenment. Thus, the performance recovery during en-
lightened post-copy migration is not significant because it
requires most pages for the Memcached server to be present.
Immediate execution transfer, still, lets the contending VM
recover its performance as soon as the migration starts. On
the other hand, live migration handles the read-mostly work-
load relatively well. At 10 Gbps, it finishes almost as soon
as enlightened post-copy does. However, it performs more
state retransmission as bandwidth becomes lower, and at 2.5
Gbps it fails to finish while the benchmark continues. Note
that, because of the migration thread causing the saturation
of a core at 10 Gbps, the results at this speed are not as good
as can be expected from the 5 Gbps results.

The latency characteristics of the 10 Gbps measurements
are shown in Figure 11 (1). The top two graphs present the
90th percentile latency of the server responses over time.
The latency stays roughly between 1 and 2 ms before mi-
gration, and around 1 ms once it completes. Live migration
sustains mostly good latency until the end of migration. En-

lightened post-copy leaves the 90th percentile latency close
to 1 second right after the start of migration, while it starts
to decrease as more state arrives at the destination. The bot-
tom two graphs show CDFs of the response times during the
same 5-minute period. Despite its longer tail to the right side,
enlightened post-copy still maintains the curve of the mi-
grated VM close to that of the contending VM and those with
live migration. While the differences in throughput should
also be considered when interpreting these results, they in-
dicate that the impact on latencies of the served requests is
moderate at the 5-minute granularity.

5.2.2 MySQL
Figure 10 (2) shows the throughput results with MySQL. Al-
though the workload is less network-intensive than Mem-
cached, multiplexing user traffic between the VMs on the
source causes contention. We also attribute to this bottle-
neck the ephemeral performance drops that are observed es-
pecially before migration. As the workload has more mem-
ory access locality, as well as memory allocated besides the
cache of MySQL itself, enlightened post-copy gains signif-

(1) Memcached (2) MySQL (3) Cassandra

90
th

 P
er

ce
nt

ile
 L

at
en

cy
 (m

s)
C

D
F

Figure 11. Latency with Enlightened Post-Copy and Live Migration at 10 Gbps. The black and gray lines correspond to the
migrated and contending VMs, respectively. In each column, the top two graphs show the 90th percentile latency over time
on a log scale, with the shaded areas indicating the duration of migration. The bottom two figures are CDFs of the response
latencies during the 5-minute period, with markers at every 10th percentile.

icantly from prioritized state transfer. The throughput of the
migrated VM starts recovering shortly after the migration
start, and well before its total duration. In addition to taking
longer as the workload size increases with respect to band-
width (i.e., at lower bandwidth), live migration also exhibits
more interference with the throughput of the migrated VM
at higher bandwidth. The reason is that the workload is fairly
CPU-intensive, and that the migration thread performs dirty
state checking more frequently per unit time. Also, unlike
all the other cases, live migration completes sooner than en-
lightened post-copy at 10 Gbps. As the interference of the
hypervisor slows the guest, it consumes less computational
resources besides those spent for network transfer than en-
lightened post-copy does. As a result, live migration can bet-
ter utilize the bandwidth.

The latency results for the workload are shown in Figure
11 (2). The 90th percentile latency with enlightened post-
copy recovers quickly as the throughput does, lowering to
the level of a VM without contention before the completion
of migration. The CDFs also indicate that the response time
distributions are comparable between the two methods, in-
cluding the tails to the right representing the maximum la-
tency.

5.2.3 Cassandra
Finally, Figure 10 (3) shows the results with Cassandra. This
workload makes the CPUs on the source the bottleneck for
the VMs before migration. Its total duration not being af-
fected by the resource intensity of the workload, enlightened
post-copy finishes as soon as the amount of memory in use
has been transferred. It also starts recovering the throughput
of the migrated VM halfway through the migration process.
With severe CPU contention on the source, live migration
is prevented from performing dirty state checking and state
transmission frequently. Thus, we do not observe its interfer-
ence with the migrated VM’s throughput, but instead see to-
tal duration heavily penalized at higher bandwidth; effective
state transfer rate stays low enough that the duration differs
only slightly between 10 and 5 Gbps. Overall, the difference
in the duration between the two methods is more significant
than with the other workloads.

As shown in Figure 11 (3), the good performance of
enlightened post-copy is also reflected in the latency results.
The 90th percentile latency increases for a short period with
enlightened post-copy, and soon drops to the ideal level
without the contention. Also, the response time distributions

of enlightened post-copy and live migration compare well to
each other. Except for the right tail of the migrated VM being
a little longer with enlightened post-copy, the two methods
show similar distribution curves.

5.3 Comparison with Baseline Approaches
We have so far compared enlightened post-copy with live
migration based on pre-copy, which is predominantly used
in today’s virtualized environments. We further describe our
design trade-offs by way of comparison to two fundamental
approaches: stop-and-copy [36, 43] and simple post-copy.
Stop-and-copy is an early form of migration that stops the
VM, transfers all its state, and resumes the VM, in a sequen-
tial manner. It achieves the shortest total duration possible
at the cost of making down time equivalently long. Simple
post-copy solely uses demand fetches. It transfers only those
memory pages that are being accessed by the guest on the
destination, making each access incur an RTT between the
hosts. These approaches can be considered as extreme de-
sign points: stop-and-copy as live migration that eliminates
iterations for the sake of minimal duration, and simple post-
copy as enlightened post-copy without, or with completely
ineffective, enlightenment. They thus serve as baselines that
reveal the benefits of using the sophistication in enlightened
post-copy.

Figure 12 illustrates the behavior of stop-and-copy and
simple post-copy with the Memcached and MySQL work-
loads at 10 Gbps. The two workloads exemplify cases in
which they perform well or poorly compared to enlight-
ened post-copy (whose corresponding cases are shown in
Figure 10 1a and 2a). Stop-and-copy works relatively well
for Memcached, and poorly for MySQL. Its performance is
determined by the state transfer amount, regardless of the
workload, while enlightened post-copy copes better with the
MySQL workload than with the Memcached workload. The
gain by enlightened post-copy, therefore, becomes clearer in
the MySQL case. Simple post-copy is ineffective for Mem-
cached and fairly adequate for MySQL. It significantly im-
pacts the Memcached performance once the VM starts on
the destination, as the cost of page retrieval is prohibitive for
the memory-intensive workload. MySQL, on the other hand,
exhibits enough memory access locality to prevent this cost
from significantly affecting its performance. As a result, en-
lightened post-copy shows a clear advantage in the Mem-
cached case. In summary, stop-and-copy and simple post-
copy have cases they can handle and those they cannot; en-
lightened post-copy performs comparably to them in their
best cases, and outperforms them considerably in the other
cases.

5.4 Costs of Enlightenment
Enlightened post-copy targets VMs under load and makes
explicit design trade-offs. One question that arises is the
overhead incurred due to its design when used in other situ-
ations. Table 2 shows time and state transfer statics of mi-

!"#$%&'()* +#,$-.%/#(/#% 01)2/#)$3# +4/51%$3#
678#)9/7

63%8,
:178%$3#

;$</ = >?@A >BCD >BCD
+EF >GH AI> H@DI @BAH

!8*'6$(/'J/%7$5)

!"#$%&'()* +,-./012 3-45#6
7-%89

+:;9 7,--'<-40,2
=#>0,45%$0#

?0%5@

A$B- CDEFGFH
!CDDI*

. . . CDEFGFH

J+/ KHDEL
!GMDI*

LFE
!DMCI*

LNCCLL
!FOMFI*

CD
!PPDMCI*

FDLCCL

!Q*'R%5%-'?,5#;>-,'S40:#%;

Table 2. Costs of Idle VM Migration. The tables show time
and state transfer statistics of migrating an idle VM, with
no active applications inside. The numbers in parentheses in
part (b) represent percentages of the total transfer amount.

grating an idle VM with 30 GB memory over 10 Gbps.
The guest OS uses approximately 1 GB of memory, with no
user applications actively running. In part (a), the columns
from left to right indicate guest communication time for ob-
taining enlightenment, time until the VM is suspended on
the source, execution transfer time, and total duration. Al-
though enlightened post-copy pays the price of communi-
cating with the guest OS, the cost is insignificant in this idle
VM case. Live migration, even when the VM is idle, needs to
scan the entire guest memory and thus takes some time un-
til completion. Overall, enlightened post-copy is no worse
than live migration in terms of the time metrics. Part (b) in
the figure shows the amount of state transfer by the transfer
method used. “Free memory information” for enlightened
post-copy represents how much data is sent to inform the
destination hypervisor of all the unallocated memory pages.
Since enlightened post-copy performs one-time transfer and
live migration needs little retransmission, they transfer sim-
ilar amounts in total.

In order to measure the real-time cost of tracking page
allocation in the free bitmap, we ran a microbenchmark pro-
gram inside the guest. The program performs repeated mem-
ory allocation, as fast as possible, in chunks of 1000 indi-
vidual 4KB malloc() and free() calls each. With the original
Linux kernel and our modified kernel, one pair of these calls
takes 1.394 us and 1.455 us (4.4% increase), respectively. As
demonstrated in the preceding results, this difference typi-
cally has negligible impacts on regular applications because
they do not allocate and free memory as frequently.

6. Related Work
VM migration has improved over the past decade, with pre-
vious work targeting different environments. Live migration
focuses on minimizing the down time of migrated VMs, and
exemplifies pre-copy approaches. Early work on VM trans-
fer started with stop-and-copy, in which guest execution is
suspended before, and resumed after, entire state transfer. It
was used by Internet Suspend/Resume [22, 37], and adopted
by µDenali [43]. Stop-and-copy was also augmented with
partial demand fetch and other optimizations [36] for virtu-

(x1000)

(x1000)

(x1000)

(x1000)

(a) Memcached (b) MySQL

Figure 12. Behavior of Baseline Approaches. The y-axis indicates throughput in operations or transactions per second. The
black and gray lines represent the migrated and contending VMs, respectively, and the dotted lines the aggregate of the two.
The shaded areas show the duration of migration.

alizing the user’s desktop environment, as virtual desktops,
in Internet Suspend/Resume and Collective [11, 21, 34, 35].
The approach opposite to the pre-copy style is post-copy
migration. VMs are resumed on their destination first, and
then their state is retrieved. Examples of this approach in-
clude work by Hines et al. [16, 17] and by Liu et al. [24].
Post-copy migration is often desirable when migrating all
state as fast as possible is prohibitive with respect to avail-
able network resources. Also in such situations, optimized
techniques have proven to be effective that are based on
a pre-copy approach [9, 44] and large-scale solutions such
as VM distribution networks [31–33]. Hybrid approaches
utilizing pre-copy and post-copy have also been proposed
[26]. Finally, various optimizations to migration have been
used, such as page compression [15, 40] and guest throt-
tling [9, 27]. Page compression can considerably reduce the
amount of state transfer, being effective when the migra-
tion process is not bottlenecked by CPUs. Guest throttling
helps live migration to complete early by limiting the rate of
page dirtying. In this work, on the other hand, we aim to let
VMs that are already slowed down by contention consume
as many physical resources as possible.

The other key aspect of our work is enlightenment, which
has been used in various ways. Satori [28] uses the knowl-
edge of guests about their reclaimable memory, for memory
consolidation between multiple VMs. Ballooning [41] is an-
other well-established form of explicit guest involvement in
the memory reclamation by the hypervisor. Our work ap-
plied the concept of enlightenment to migration, and in-
vestigated how explicit guest support can improve migra-
tion performance. An alternative approach to full enlight-
enment through guest cooperation is to use hypervisor-level
inference. Kaleidoscope [10] exploits memory semantics in-
ferred from architecture specifications, and uses the obtained
information for fast VM cloning. JAVMM [18] expedites
migration of VMs containing Java applications, by having
them inform the hypervisor of memory containing garbage-
collectable objects and avoiding its transfer. There also exists
previous work that takes the task of migration into the appli-

cation layer, instead of passing available knowledge down to
systems software. Zephyr [14], Madeus [29], and ElasTraS
[13] are examples of such approaches applied to databases.
Imagen [25] targets active sessions for JavaScript web ap-
plications, migrating them between devices for ubiquitous
access. Wang et al. [42] proposed a fault tolerance scheme
for MPI applications that triggers their live migration.

7. Conclusion
We presented enlightened post-copy, an approach to urgently
migrating VMs under contention. It addresses aspects of
VM migration differing from the focus of the existing ap-
proaches: urgent execution transfer of the migrated VM,
thereby recovering the aggregate performance of the con-
tending VMs rapidly. Live migration, which is the current
standard, exhibits undesirable characteristics in these as-
pects due to its design choices. Departing from its blackbox
nature, we treat migration as a native functionality of the
guest OS. Enlightened post-copy exploits this cooperation
between the guest OS and the hypervisor, allowing priori-
tized post-copy state transfer that achieves the above objec-
tives. Our prototype, implemented in guest Linux and qemu-
kvm, requires only moderate changes to the guest kernel,
and it demonstrates that the cooperative approach resolves
the contention between VMs up to several times faster than
live migration.

Acknowledgements
This research was supported by the National Science Foun-
dation under grant number CNS-1518865, the Alfred P.
Sloan Foundation, and the Defense Advanced Research
Projects Agency under grant number FA8650-11-C-7190.
Additional support was provided by the Intel Corporation,
Vodafone, Crown Castle, and the Conklin Kistler family
fund. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the authors
and should not be attributed to their employers or funding
sources.

References
[1] AWS | Amazon Elastic Compute Cloud (EC2) - Scalable

Cloud Hosting. http://aws.amazon.com/ec2.

[2] memcached - a distributed memory object caching system.
http://memcached.org.

[3] OLTPBenchmark. http://oltpbenchmark.com/
wiki.

[4] The Apache Cassandra Project. http://cassandra.
apache.org.

[5] userfaultfd v4 [LWN.net]. https://lwn.net/
Articles/644532.

[6] Virtio - KVM. http://www.linux-kvm.org/page/
Virtio.

[7] VMware vSphere vMotion Architecture, Perfor-
mance and Best Practices in VMware vSphere
5. http://www.vmware.com/files/pdf/
vmotion-perf-vsphere5.pdf.

[8] Yahoo! Cloud Serving Benchmark (YCSB). https://
github.com/brianfrankcooper/YCSB/wiki.

[9] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg.
Live Wide-Area Migration of Virtual Machines Including Lo-
cal Persistent State. In Proceedings of the Third Interna-
tional Conference on Virtual Execution Environments (VEE
’07), San Diego, CA, USA, June 2007.

[10] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi,
M. Hiltunen, A. Lagar-Cavilla, and E. de Lara. Kaleidoscope:
Cloud Micro-elasticity via VM State Coloring. In Proceed-
ings of the Sixth ACM European Conference on Computer
Systems (EuroSys ’11), Salzburg, Austria, April 2011.

[11] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam.
The Collective: A Cache-based System Management Archi-
tecture. In Proceedings of the Second Conference on Sympo-
sium on Networked Systems Design & Implementation - Vol-
ume 2 (NSDI ’05), Boston, MA, USA, May 2005.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live Migration of Virtual Ma-
chines. In Proceedings of the Second Conference on Sympo-
sium on Networked Systems Design & Implementation - Vol-
ume 2 (NSDI ’05), Boston, MA, USA, May 2005.

[13] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS: An Elastic,
Scalable, and Self-managing Transactional Database for the
Cloud. ACM Transactions on Database Systems, 38(1), April
2013.

[14] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr:
Live Migration in Shared Nothing Databases for Elastic Cloud
Platforms. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’11),
Athens, Greece, June 2011.

[15] S. Hacking and B. Hudzia. Improving the Live Migration Pro-
cess of Large Enterprise Applications. In Proceedings of the
Third International Workshop on Virtualization Technologies
in Distributed Computing (VTDC ’09), Barcelona, Spain, June
2009.

[16] M. R. Hines, U. Deshpande, and K. Gopalan. Post-copy Live
Migration of Virtual Machines. SIGOPS Operating Systems

Review, 43(3), July 2009.

[17] M. R. Hines and K. Gopalan. Post-copy Based Live Vir-
tual Machine Migration Using Adaptive Pre-paging and Dy-
namic Self-ballooning. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE ’09), Washington, DC, USA, March
2009.

[18] K.-Y. Hou, K. G. Shin, and J.-L. Sung. Application-assisted
Live Migration of Virtual Machines with Java Applications.
In Proceedings of the Tenth ACM European Conference on
Computer Systems (EuroSys ’15), Bordeaux, France, April
2015.

[19] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman. Op-
timized Pre-copy Live Migration for Memory Intensive Ap-
plications. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC ’11), Seattle, WA, USA, November 2011.

[20] A. Koto, H. Yamada, K. Ohmura, and K. Kono. Towards
Unobtrusive VM Live Migration for Cloud Computing Plat-
forms. In Proceedings of the Third ACM SIGOPS Asia-Pacific
Conference on Systems (APSys ’12), Seoul, South Korea, July
2012.

[21] M. Kozuch, M. Satyanarayanan, T. Bressoud, and Y. Ke. Ef-
ficient State Transfer for Internet Suspend/Resume. Intel Re-
search Pittsburgh Technical Report IRP-TR-02-03, May 2002.

[22] M. A. Kozuch and M. Satyanarayanan. Internet Sus-
pend/Resume. In Proceedings of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications, Callicoon,
NY, USA, June 2002.

[23] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satya-
narayanan. SnowFlock: Rapid Virtual Machine Cloning
for Cloud Computing. In Proceedings of the Fourth ACM
European Conference on Computer Systems (EuroSys ’09),
Nuremberg, Germany, April 2009.

[24] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live Migration of
Virtual Machine Based on Full System Trace and Replay. In
Proceedings of the Eighteenth ACM International Symposium
on High Performance Distributed Computing (HPDC ’09),
Garching, Germany, June 2009.

[25] J. Lo, E. Wohlstadter, and A. Mesbah. Live Migration of
JavaScript Web Apps. In Proceedings of the Twenty-Second
International Conference on World Wide Web (WWW ’13
Companion), Rio de Janeiro, Brazil, May 2013.

[26] P. Lu, A. Barbalace, and B. Ravindran. HSG-LM: Hybrid-
copy Speculative Guest OS Live Migration Without Hyper-
visor. In Proceedings of the Sixth International Systems and
Storage Conference (SYSTOR ’13), Haifa, Israel, June 2013.

[27] A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, R. Koller,
T. Garfinkel, and S. Setty. XvMotion: Unified Virtual Ma-
chine Migration over Long Distance. In Proceedings of the
2014 USENIX Annual Technical Conference (USENIX ATC
’14), Philadelphia, PA, USA, June 2014.

[28] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: Enlightened Page Sharing. In Proceedings of the 2009

USENIX Annual Technical Conference (USENIX ATC ’09),
San Diego, CA, USA, June 2009.

[29] T. Mishima and Y. Fujiwara. Madeus: Database Live Migra-
tion Middleware Under Heavy Workloads for Cloud Environ-
ment. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’15),
Melbourne, Australia, May 2015.

[30] M. Nelson, B.-H. Lim, and G. Hutchins. Fast Transparent
Migration for Virtual Machines. In Proceedings of the 2005
USENIX Annual Technical Conference (USENIX ATC ’05),
Anaheim, CA, USA, April 2005.

[31] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual Ma-
chine Image Distribution Network for Cloud Data Centers. In
Proceedings of INFOCOM 2012, Orlando, FL, USA, March
2012.

[32] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh,
and D. Rubenstein. VMTorrent: Virtual Appliances On-
demand. In Proceedings of the ACM SIGCOMM 2010 Con-
ference (SIGCOMM ’10), New Delhi, India, August 2010.

[33] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh,
and D. Rubenstein. VMTorrent: Scalable P2P Virtual Ma-
chine Streaming. In Proceedings of the Eighth International
Conference on Emerging Networking Experiments and Tech-
nologies (CoNEXT ’12), Nice, France, December 2012.

[34] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich,
J. Chow, M. S. Lam, and M. Rosenblum. Virtual Appliances
for Deploying and Maintaining Software. In Proceedings of
the Seventeenth USENIX Conference on System Administra-
tion (LISA ’03), San Diego, CA, USA, October 2003.

[35] C. Sapuntzakis and M. S. Lam. Virtual Appliances in the
Collective: A Road to Hassle-free Computing. In Proceedings
of the Ninth Conference on Hot Topics in Operating Systems -
Volume 9 (HotOS ’03), Lihue, HI, USA, May 2003.

[36] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the Migration of Virtual Com-
puters. In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI ’02), Boston, MA,
USA, December 2002.

[37] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, A. Surie,
D. R. O’Hallaron, A. Wolbach, J. Harkes, A. Perrig, D. J.

Farber, M. A. Kozuch, C. J. Helfrich, P. Nath, and H. A.
Lagar-Cavilla. Pervasive Personal Computing in an Internet
Suspend/Resume System. IEEE Internet Computing, 11(2),
March 2007.

[38] A. Shribman and B. Hudzia. Pre-Copy and Post-copy VM
Live Migration for Memory Intensive Applications. In Pro-
ceedings of the Eighteenth International Conference on Par-
allel Processing Workshops (Euro-Par ’12), Rhodes Island,
Greece, August 2012.

[39] X. Song, J. Shi, R. Liu, J. Yang, and H. Chen. Paralleliz-
ing Live Migration of Virtual Machines. In Proceedings of
the Ninth ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE ’13), Houston, TX,
USA, March 2013.

[40] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation
of Delta Compression Techniques for Efficient Live Migra-
tion of Large Virtual Machines. In Proceedings of the Sev-
enth ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE ’11), Newport Beach,
CA, USA, March 2011.

[41] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation
(OSDI ’02), Boston, MA, USA, December 2002.

[42] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Proactive
Process-level Live Migration and Back Migration in HPC En-
vironments. Journal of Parallel and Distributed Computing,
72(2), February 2012.

[43] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Con-
structing Services with Interposable Virtual Hardware. In Pro-
ceedings of the First Conference on Symposium on Networked
Systems Design and Implementation - Volume 1 (NSDI ’04),
San Francisco, CA, USA, March 2004.

[44] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der
Merwe. CloudNet: Dynamic Pooling of Cloud Resources by
Live WAN Migration of Virtual Machines. In Proceedings
of the Seventh ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (VEE ’11), Newport
Beach, CA, USA, March 2011.

